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. Abstract
The performance of three Fortran kernels and two CAL kernels
N is simulated for a CRAY X-MP architecture of up to 16 processors
E; and 256 memory banks. The effects of variations on the X-MP-2
- memory conflict resolution protocol, including X-MP-4 protocol,
. R are studied.
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I. INTRODUCTION

ﬂ Research involving efficient use of commercial multiprocessor
scientific architectures such as the CRAY X-MP is presently
s focused on algorithmic decomposition of problems into large

concurrent tasks. Early evidence indicates that if the number of

s: processors (=p) is small (say 2 < p < 16) many problems can be
decomposed into such large tasks that the speedup achieved is
= nearly equal to p [1](2]
" At this high efficiency, a heretofore second-order effect may
" begin to develop importance, namely, the interference of reads and
, %; writes attempting to simultaneously access shared memory resources

(memory banks, sections, etc). As p increases from the present 2
and 4 to 8, 16, and beyond, increasing the number of banks
correspondingly not only increases the read/write time - for
conflict checking - but also imposes severe problems in high-speed
.-ﬁ chip and memory organization. '

Recent related studies have examined this problem with real

: !! codes and a generic class of processors [3], and for the quY X-MP
: . [5) with random memory fetches to gain insight into the effects of
s various conflict protocols on access delays.
e E In this report, the mechanisms which account for the delay of
memory accesses is studied with the aid of an instruction-level
f; timing simulator for the CRAY X-MP family of processors. The
- accesses associated with running PFortran and assembly codes on an
} MP of up to 16 processors are studied using simulator
- instrumentaion which records delay and other information.
l— Projections are made which indicate that the X-MP-4 conflict

resolution protocol, if used with 8 and 16 processors, creates

significantly longer access delays than the X-MP-2 protocol.
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In a companion report (8], the separate question of the
effects of access delays on algorithms is studied, and conflict-

resistant algorithms are proposed.

II. HARDWARE REVIEW

A, INTRODUCTION

Although certain definitions and observations may be
appropriate to other classes of multiprocessors, this study is
most directed at vector multiprocessors such as the CRAY X-MP
where shared memory access rates are high for typical scientific
vector codes. Indeed the motivation for this study requires some
knowledge of the X~-MP organization and operation. This will be
reviewed below; more related discussion is given in (5] and [6].

B. X-MP-2 MEMORY AND CONFLICT RESOLUTION

Figure 1 shows the shared memory organization of the
X-MP~-2, the two processor X-MP extended to p processors in the
simulator. FPor each processor, every fourth bank is accessed
through the same section; with p processors, there are 4 p
sections. Conflicts occur at the bank or section level, as
follows:

Bank-Busy conflict - The Bank Busy conflict is caused by any

port within or between CPUs requesting a bank currently in a

reference cycle. Resolution of this conflict occurs when the

bank cycle is complete. Hold reference because of a Bank

Busy conflict is 1, 2, or 3 CPs.

Simultaneous Bank conflict - The Simultaneous Bank conflict

is caused by two or more ports in different CPUs requesting

the same bank. Resolution of this conflict is based on a

priority (see below). Hold reference is a 1 CP because of a

Simultaneous Bank conflict. A Bank Busy conflict always

follows a Simultaneous Bank conflict.

Section conflict - The Section conflict is caused by two or

more ports in the same CPU requesting any bank in the same

section. Resolution of this conflict is based on a priority,
the Bank Busy conflict, and Simultaneous Bank conflict. The
highest priority port with no Bank Busy conflict and no

Simultaneous Bank conflict is allowed to proceed, all other

ports involved in this conflict hold (see below). Hold
reference is 1 CP because of a Section conflict.
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When these rules fail to resolve a conflict, the vector
stride and instruction issue time are utilized to establish
priority [6].

Extensions of the buffer fetch reservation protocol to 16
processors are discussed later.

C. X-MP-2M CONFLICT RESOLUTION

The X-MP-4 resolution protocol has two major differences from
the X-MP-2. To evaluate the effects of one of these, an
intermediate (hypothetical) processor has been simulated, the X~
MP-2M (M for modified). The second difference will be studied in
a future report.

In the X-MP-2M, the sections are numbered differently from
the X-MP-2. In the X-MP-2, bank #b is in section number s =
mod(b,4). In the X-MP-2M, bank #b is in section number s =
mod(b/4,4). This groups banks in.fouts, where each group of 4
belongs to one of four sections. It has been shown independently
in [5] that this avoids certain catastrophic conflict patterns

associated with the X-MP-2.
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III. SIMULATION STUDIES

A, THE SIMULATOR

An instruction-level simulator produces numerical and timing
information for the X-MP-2, the X-MP-2M, and the X-MP-4. The
general timing accuracy of the X-MP-2 simulator is .2% for a
uniprocessor and 1.3% for 2-processor hardware. Codes of reaa and
write instructions only are exact with conflicts. Documentation
of this concurrence is given in Appendix B. The X-MP-4 simulator
does not incorporate several minor timing differences of the
X-MP-4 hardware vis-a-vis the X-MP-2; its timing accuracy has not
been validated at this writing.

B. THE EXPERIMENTS

A number of parameters were involved in this simulation
study.

(a) Codes ranged over three Fortran~derived and two CAL

codes (see Appendix A).
(b) Processors ranged from 1 to 16.

{c) Banks ranged from 16 to 256; the ratio

- # of banks '
Rbp ¥ of processors !

1)
ranged from 4 to 64.

(d) Bank conflict protocols of the X-MP-2, X-MP-2M, and X-
MP-4 were studied.

The runs will be indicated by the nomenclature of Table 1.

In these experiments, nearly all vectors had a length (VL) of

64 and a stride of unity. This will be assumed in all analyses.

C. DELAY DEFINITION AND SIMULATION

A unit stride vector access is depicted in the memory

utilization map of Figure 2, which displays the reservations
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N Conflict protocol
~

~ 2 : X-MP-2
- 2M : X-MP-2M

# of banks

XXXX|.{MM|.|NN}.|YY

L of processors

Code
MUL1: medium access Fortran matrix multiply
MUL2: high access Fortran matrix multiply
MUL3: 1low access CAL matrix multiply
RAN : high access random CAL read/write only
T FFT : multiple (64) 8-point FFT's

CFD : fluid dynamics kernel

Table 1. Experiment designations
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. placed on memory banks at each CP. The first element of a 50-
length vector is accessed in memory at CP = 5443 and reserves the
bank for 4 CP's. The last element is accessed at CP = 5497,

Define

[
17

Tp = time of attempted access of first vector element

"

TL = time of access of last vector element

where times are measured in CP's. Then define the access delay

5,
PR

Dac =Tp =Ty, - VL +1

s 2 »
T
l': [

Dac is equal to 4 for the above case. The same definition applies
- to vector reads and writes.
. Simulation of only the conflict resolution protocol of any of
‘ r' the CRAY family of processors is straightforward for seqguences of
memory read and write instructions only. One can then test the
statistical variation of access delay with reads and writes
. distributed (for example) uniformly across the banks [5].
However, implementation of such protocol in a general instruction-
-l level simulator is more complicated. Among other problems, one
- must accommodate for the effects of access delays on instructions
| involving these accesses as operands or results. Thus, an entire
"chain®™ of instructions must be held if a read or write is
involved.
Two advantages result from implementation in a general
simulator.
fi (a) The access delays associated with actual codes can be
determined; not only may these have nonuniform bank
access distributions but (static) memory utilization
will vary with the code (see Appendix A).

(b) Algorithm delay - the timing overhead in total code

e execution resulting from access delays - can be
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measured. This is discussed in [8), where it is shown
that, although access delay and algorithm delay may
apparently be related by rules of thumb, algorithms can
be designed to have a low sensitivity to even large
access delays.

D. DELAY DISTRIBUTION FUNCTIONS

The simulator can be instrumented to record Dac for each
access. Over an entire simulation, these c¢an be normalized as
distribution functions, such that the functional value for each
delay is the fraction of its occurrence relative to all accesses,
expressed as a $. This will be termed a DDF (delay distribution
function).

Among other uses of DDF's to be studied below, they can
demonstrate the granularity of the values a delay may assume, as a
function of the number of processors. In Figure 3a, for example,
a uniprocessor matrix multiply incurs only three delays (0, 2, and
6 CP). However, as the number of processors increases, a much
smoother DDF is observed.

E. OFI"GINS OF ACCESS DELAY

1. Introduction

In the process of simulating hundreds of combinations of
codes, conflict protocols, and numbers of banks and processors,
examples have been found that accent the major sources of delay.
These will be illustrated with the simulator instrumentation.
Their significance to individual runs will also be evaluated;
their importance to aggragate performance will be considered in

Section 1V,
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2. Effect of buffer fetches

“ In extending the X-MP-2 to more processors, the instruction
buffer fetch protocol of the X-MP-4 is adapted. Here, the
B processors are "paired", so 8 data ports are available for a
%{ fetch. A reservation is placed on all 32 banks that will be
A referenced during the fetch, and all references made by the CPU's
that form the "pair” are held. The references for all other
CPU's, as long as they do not access the banks used for the fetch,
are allowed to proceed. Two examples are shown in Figure 4a. The
: reservation on the banks is for 7 CP (until all banks involved in
r the fetch have cycled). This results in a 10-clock minimum delay
5 o in any access interrupted by a buffer fetch. With 16 banks, the
lowest number simulated, pairing is not possible and a 14-clock
: . delay results. The DDF's for CFD.4.64.2 and CFD.1.16.2
. simulations are shown in Figure 5. The 10-clock delay peak is
clearly shown in Figure Sb; in Pigure 5a, the delays increase
' = abruptly at 14 clocks.
B From knowledge of the number of banks (NB), the bank-width
(BW) of an instruction fetch, and the number of fetches (NF) over
the execution time (T) of a run, an estimate may be made of the
fraction (fI) of interrupted vector accesses.

A single interruption will occur if a vector is initiated,
- ¢ without interference from other vectors, in the trapezoidal area
illustrated in Pigure 4b. This area is (BW)(VL-1) bank-clocks:;
the total area of hazard with NF fetches in (NF)(BW)(VL-1), from a
(; area of (NB)(T) bank-clocks for the total simulation. The

fraction of vectors interrupted by a buffer fetch is therefore
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£ = (NF)(BR)(VL
I Hﬁﬁnﬁ—l
- gngupp;(awzgvnz

- (NFPi(BW)(VL) (2)

P
where P is the number of processors, NFP is the number of buffer

fetches per processor and Rbp is the ratio of banks to processors.
For the CPFD code, NFP = 6 and T = 6413 clocks; with BW = 32, VL =

64, and Rbp = 16,

- 16)(32)(64)
fr L(“Tﬂ‘ﬁ'ﬁ)'

= .12 (3)
This fraction is supported by the DDF's of the associated CFD

code of Figure 6, where the ratios of (10-clock delays)/(0-clock
delays) are .19, .14, and .15 for p = 4,8 and 16 processors
respectively. These latter ratios will normally be higher than
predicted by Eq. ( 2), since some 10-clock delays will occur even
without buffer fetches. The DDF's of Figure 6 show a small
increase for 20-clock delays as well, indicating the fraction of

reads which encounter two buffer fetches.

The average access delay introduced by these fetches (Eacbf)

is simply 10f; or 1.2 clocks in the above case.

3. Section conflicts

a. Introduction

In a code executing from a processor with more than one




SThD » 5.9
. 48 3
t" % 47 X
o .
10 X 1
9 X x
l’ 8 x 4 X
-~ 7 x x8 X
& X3xx X
. S XXXX X
! 4 XXAXXZ 13
) 3 AXXAX9S A1}
e 2 XXXXXKXZO2NXXOP o
1 XXXXXXXXXKAXXXXD4868XT62202
“: 11111111112222222222
o 0123454789012345678901234%54789
DELAY (CLOCKS)
oo (a) 4 processor
-t
S CFD.8.120.2 MEAN = 3.2
s 87D = s.3
s2 4
.. L S1 X
f; .
9 xa3
8 XXX 3
N 7 XXX X
-~ 6 XXX X
S S XXX8 X
4 XXXX7 X
. 3 XXXXX2 Xt
. 2 XXXXXX81 XX11
1 XXXXAXXXOIAXAXSS1541 7817122200111 11000001

111111111122220222223333I3IITIII74444444444
012345678901 23456789012345678901 2343467890123456789

>
- DELAY (CLOCKS)
] (b) 8 processor
- CFD.16.2%6.2 MEAN = 3.9
o STD = 6.2
. 48 1
% 47 X
9 X3
8 Xx3 3
7 XXX4 X
- & AXXX X
&E S XXXX X
4 XXXX9 X
3 OXXXXXIL X2
~ 2 XXXXAXX 2 XX341 1
-, 1 XXXXXXXBAPXXXXX6IBAZXSSI2EL 11E21 111EEECEENQQCOQVE

1111111111222222222233I3IIIIII334444444444
01234367890123456789012343478901234567890123456789

DELAY (CLOCKS)
(c) 16 processor

[ .'l._\ .

Figure 6. DDF's for 4,8, and 16-processor executions

TW L LS T RBTRLSY
l h'.

of CFD code, with Rbp = 16.

PRI
.
’
.




B T R e N e e S T R o o o B T T e T R T N o I R S S W W W ™ W X 3

............

active port, there is a potential for conflicts between ports at

I’ the section level. These occur either as (a) steady-state
: conflicts or (b) startup conflicts.
5 ﬁl Among the factors likely to influence the number of section

conflicts is the number of active ports. A code which uses only
o one active port may suffer bank conflicts, but not section
conflicts; this may result in less access delay than a code with
less total memory traffic shared between two or three ports.

The simulator has a capability to monitor dynamically the

number of simultaneous accesses from each processor. The

o 4
., .0 '- ‘0 . s s

f fractions of total run times that 0, 1, 2, and 3 ports are busy n
a typical processor is given in Appendix A.

; 31 b. Steady-state section conflicts

' Ii It has been observed in ([S] that in the X-MP-2, a steady

state section conflict between accesses from a CPU can occur when

both ports vie for neighboring memory banks. An example is shown

in Figure 7 between instructions A3 and Q3, where every fourth

M access is delayed by one clock. This can create a worst-~case

: - helay of 16 clocks in a 64-length unit-stride vector access. With

X-MP-2M protocol, this phenomena does not occur.

The relative importance of section renumbering to eliminate
this effect is depicted in Pigure 8a-b for CFD.2.32.2 and
CFD.2.32.2M simulations. The former shows a cluster of delays
between 13 and 16 clocks not present in the latter. The mean
;Z; delay is reduced from 4.6 to 3.5 by section renumbering. Note
that this effect is not evident in the DDF of CFD.16.256.2 of

Pigure 8c, even with the disadvantageous numbering. The reason is

s
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that the probability of two accesses being in the same
neighborhood with 256 banks will in general be much less than with
32 banks. This effect is therefore significant only with a small
number of banks.

c. Two-port startup section conflicts*

Although X-MP-2M protocol eliminates steady-state conflicts,
it introduces a startup conflict phenomena not significant with
X-MP-2 protocol. Figure 9a illustrates a worst case example of
this conflict. Here, two ports of a processor are involved.
Instruction b is in progress at CP 100 when instruction a attempts
to access bank #3. b will have priority because it is in progress
so a will hold until CP 104. Because both are in Section #0, a
will then start a 4-clock access (only the first clock is marked
in the figure); however, on CP105 it will again conflict with b,
since both are now in Section #1, causing a three clock delay in
a.

An instruction b in prioritized execution may be accessing
bank 4r, 4r+1, 4r+2, or 4r+3 when instruction a attempts to
startup in any of 16 banks in sections 0, 1, 2, or 3. There are
therefore 4x16 = 64 distinctive relative startup positions of a
and b. Each produces a startup delay, which may be counted and
summed to produce an average startup delay. For the X-MP-4
section numbering, this number of startup delay clocks is 112,

yielding an average delay

*Startup section conflict analysis assumes an infinite-bank
memory, where only comflicts between periodic sections are
accounted for; the probability of two accesses being made to the
same bank is assumed zero.
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clocks or 2.74% for VL=64. The corresponding delay for X-MP-2

numbering is
Dye = -25

The same analysis which yielded the above D,. can be used to
evaluate the mean delay when one of two accesses, each in
conflict-free steady state access, is bumped a prescribed number
of clocks. Specifically, with b in prioritized execution as in
Figure 9a, all 16 possible startup states of a are tested to
determine which represent a conflict-free execution. For the
valid states, the access of a is intentionally delayed (bumped) a
prescribed number of clocks at CP100, to determine a new startup-
like condition. This may result in a being in another conflict-
free access, or a may now be in a conflict with b, and an extra
delay incurred. These delays are summed and averaged over all
possible valid states of a and b; the results are shown in Table
2. For example, an access bumped by 4 clocks would, on the
average, incur a total delay of 4 + 2.44 = 6.44 clocks before it
reached a new steady state compatible with instruction b. The X-
MP-2 protocol would produce a total delay of 4.25 clocks.

This amplification of access bumps is felt to have a major
role in the relatively poor performance of the X-MP-2M and X-MP-4.
This analysis illustrates the potential for disruptive transients
propogating across accesses and dramatically increasing delays.
Analysis of such a dynamic situation is beyond the scope of this
report.

d. Three-port startup section conflicts

The last section considered pairs of instructions

representing a time when two ports are active. With two ports
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: Extra Delay
Bump X-MP-2 X-MPpP-2M
protocol protocol
: (clocks) (clocks) (clocks)
2 0 0. 0.
o 1 .25 .778
- 2 .25 1.44
N 3 .25 2,00
. - 4 .25 2.44
: 5 .25 2.78
- 6 .25 3.00
. r 7 «25 3.1
- 8 .25 3.1
o 9 .25 3.11
1] 10 .25 2.33
- 1 .25 1.67
S 12 .25 1.11
' n 13 .25 .67
: 14 .25 .33
V - 15 .25 A1
- 16 0. 0.
- Table 2. Extra average delay suffered by a bumped access.
o
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active and in the steady state, if the third port were to initiate
an access, it is relatively easy to show that, depending on the
relative location of the first two accesses, only 2-5 banks of
every 16 can accommodate a third conflict-free startup (banks 27
and 28 in Figure 11).

To evaluate startup conflict with three ports it is possible
to set two instructions (a and b) in a conflict-free steady-state
mode, and then count the delays incurred by a third instruction ¢
initiating an access in each of 16 banks. This is repeated for
all combinations of a and b in a conflict-free steady state (36
rather than the 64 of the last section). A worst case example is
illustrated in Figure 11, where a 14-clock delay is indicated.
Overall, among 36x16 = 576 cases, a total of 2944 delay clocks are

counted, for

Db = 2944
ac 5,8
=5.11

clocks average startup delay.

4. Effects of Section Design Parameters
The above startup delay analyses for two-port and three-port

accesses with X-MP-2M numbering can be performed as a function of

the number of sections and the number of banks per section - both
equal to 4 in the above study.

Table 3 gives the results of enumerating all combinations of
instruction startups and averaging delays, as above. Three

results are worthy of note.
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NBPS NS

16 2

Table 3.

2-port access 3-port access
(clocks) (clocks)
1.5 ———
.75 4.2
.38 .86
3.50 ——-
1.75 5.11
.88 2.04
7050 hatndhad
3.75 11,2
1.88 4.40
.94 1.93
15.5 - -
7.75 23.5
3.87 9.11
1.93 4.15

Startup section delays as function
of the number of sections (NS and the

number of banks per section (NBPS).
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(a) If the ratio

- % of sections (NS)
bs ¥ of banks per section (NBPS)

is maintained constant, both the two-port and three-port startups

R

are relatively constant. 1If Rbs = 1, for example, the three-port
startups of 5.11, 4.40 and 4.15 clocks are determined.

(b) For a given NBPS, the delay decreases as the inverse in
the increase in NS. This is reasonable, since no delays are
encountered for additional sections.

(c) For a given NS, the delay increases proportionately to
the increase in NBPS. This is explained by the doubling of the
number of delay clocks when an instruction enters a reserved

double-width section.

5. Startup bank conflicts

In codes without section conflicts (e.g., one-port
codes), the only possible conflicts are startup bank
conflicts between processors. In general codes, such
conflicts form a low-level conflict background which
interacts principally with section startup conflicts and
buffer fetches.

Define the memory utilization

U = fotal memory accesses
m total run time

for a uniprocessor. Each access occupies a 4-clock wide path

in the memory utilization map. With NB banks, ﬁh memory
utilization per processor, and p processors, the fraction of total
bank-width occupied by accesses is approximately Pd = ﬁﬁ/Rbp' For
three clocks on either side of these accesses, a startup will
either be delayed or will force a delay in the existing access.
The‘ptobabilities associated with various delays are

..............................
..

--------------
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N The probabilities associated with various delays are
n pr (3-clock delay) = P,
} pr (3-clock delay) = 2P,
\a pr (2-clock delay) = ZPd
- pr (1-clock delay) = 2Pd
s The average startup delay due to bank conflicts is computed to be
lsacbc = lg ﬁm/Rbp‘
For typical values of Rbp (=8,16), this delay is significantly
less than one clock. It should be noted that “"one port" codes -
which have no section conflicts - can have a highly regqular bank
; r conflict pattern. A version of MUL3, which utilizes more than one
port only 11% of the time and has a regular access pattern,
produced the DDF pattern of Figure 12d. Note that the frequency
i of 4-clock and 8-clock delays dominate the frequency of other non-
zero delays. Clearly, the equal-probability assumptions of the
above analysis are inappropriate. Section delays appear to have a
a randomizing, albeit negative, effect.
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Figure 12b. Memory utilization map with X-MP-2M protocol
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Figure 12c. Memory utilization map with X-MP-4 protocol
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IV. EVALUATION OF CONFLICT RESOLUTION PROTOCOLS

A. INTRODUCTION

B. AGGRAGATE PERFORMANCE

This section considers the aggragate performance
characteristics associated with the three protocols simulated,
using delays averaged across all six codes.

Figure 13 and Table 4 compare delays associated with three
protocols as a function of the number of processors. In all
cases, Rbp = 16; thus, characteristics displayed as a function of
p could as well be shown as a function of NB.

The effect of section numbering is highlighted in this
comparison. Because the X-MP-2M protocol avoids the steady-state
section conflict associated with neighboring accesses from the
same processor, Figure 13 shows X-MP-2M protocol is favored for p
= 2, This relative advantage of X-MP-2M decreases as a function
of NB when the likelihood of neighboring access decreases.
Indeed, the section startup disadvantage of the X-MP-2M discussed
in section III.E.3.c-d begins to dominate for p > 2; for p = 16
(NB = 256), the delays of the X-MP-2M is 71% greater than that of
the X-MP-2,

The continued increase in Figure 13 of access delay for p > 4
for X-MP-2M protocol is not predictable by the theory of this
report. It is surmised that, as p increases, the accesses become
less patterned and this randomness increases the collision
frequency. This slope would also appear with the X-MP-2
characteristic if the abovementioned steady-state delays had not
increased the total delay for small p; that is, the steady-state
delays decrease with p while the startup delays increase with p,
giving a combined flat X-MP-2 characteristic.
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Ry Code X-MP-2 X-MP-2M
1-processor
e MUL, 2.4 1.7
MUL, 2.7 1.7
<3 MUL, 2.2 .3
- RAN 6.0 2.1
* FFT 2.8 .9
CFD 4.2 1.3
| 2 Average 37 T3
. 2-processor
- L]
L MUL, 2.9 4.5
- MUL; 2.0 2.7
RAN 5.9 4.3
N FFT 3.1 3.3
1 CFD 4.6 3.5
Average 3.8 .3
r 4-processor
.:c. MULZ 306 7.6
e MUL;, 3.9 5.9
B MUL3 : 1.2 1.2
- RAN 6.5 7.3
K FFT 3.5 5.1
CFD 3.8 4.6
Average 3.8 .3
16~-processor
MUL 3.8 10.6
- » MUL2 3.2 7.0
* MUL3 1.7 2-6
RAN 7.6 10.9 ,
FFT 4.9 6.6
e CFD 3.9 5.2
- Average 3.7 7.2
Table 4. Averaged access delays (clocks) for six codes
with three bank conflict protocols. pr=16.
i
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C. DEPENDENCE OF Dac ON Rbp

Figure 13 and Table 2 indicate what may be regarded as
unacceptable delays Bac with X-MP-2M protocol, especially for 16
processors. It is possible to consider reducing ﬁac by using more
memory banks; in this case, the question becomes the dependence of
D, ©on Ryps When Rop > 16.

Table 5 shows the dependence of the two codes with the
largest ﬁm (and the largest Bac in Table 3) on N with p = 4, with
X-MP-4 protocol. For Bac's which may be objectionable (>10
clocks), the delay is decreased by a factor of 2.5-3.1 by doubling

the number of banks. Further increase in N, has marginal benefit.




N D,c (clocks)
. 4 processors
v MUL, 21.9 10.3 3.7 2.5
oo RAN - 18.9 7.5 4.5
Pl 8 processors
MUL, -- -- 15.2 5.2
RAN -- - 21.3 8.4
.. 16 processors
: MUL, -- -- -~ 20.5
i RAN - - - 21.9
_ Table S. Effect of increasing number of banks
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.- APPENDIX A
EXPERIMENT DESCRIPTION

'« s 878

EXPERIMENTAL PARAMETERS

v-"l *

T The codes were produced by the X-MP CPFT compiler from Fortran

source codes. Vector length (VL) is 64 and stride is 1 for all

cases.,

; ;: Distinct program and data storage was used for each of the 16
processors. Code executions were initiated at irregular intervals
to further randomize accesses between processors. In general, p
samples were used to produce mean values with p processors.

r; Two global static measures of memory accesses were made to

monitor their uniformity.

(a) Memory utilization., This is the fraction
i T = Iotal operands and results

Lo m imulation time s

3 for the average processor; it is a measure of memory traffic for

- each code, and has a maximum value of 3, corresponding to the

R number of memory ports per processor. Table 1 shows Un * .67 for

FFT, CFD, and HUL1.

. o (b) Bank utilization. Let N, be the number of banks. There

X is a risk with 64~length unit-stride vectors and N, > 64 that

banks will not be equally utilized; this would create

uncharacteristic delays in heavily-utilized banks. If W

- is the average number of accesses per processor across all banks,

and N is the standard deviation from this average, define the bank

o'
[
» % e

utilization
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X ﬁs = 1 indicates uniform accessing; if only 1/2 of the banks are
] accessed, U, = 1/2. Table 1 indicates .832 < 'ﬁ'b < .998.
.

CODE DESCRIPTIONS
(a) Pluids kernel (CFD). Taken from the vectorized code of
[7]1, this a 32-statement single-loop Fortran kernel with an
éverage of 3.2 64-length vector-vector operations/statement. Lack
= of a repetitive computational structure like FFT and MUL should
-~ make the access pattern the most random. Six buffer fetches occur
in one kernel execution.
(b) FPT kernel (FFT). This code determines multiple 8-point
complex-complex FPT's. Five buffer fetches occur in one kernel
EE execution.
(¢c) Matrix-vector multiply kernel (HULI, MULZ, MUL3). The
.I inner-loop of MUL1 and HULz has two vector reads and one write per
execution. MUL, maintains low memory utilization (Um = ,69) with
VL = 64 by multiplying 4 small (64 x 3) matrices in one kernel
" execution step; MUL2 uses the same code with 512x2 matrices,
which successively exercises the inner-loop 512/64 = 8 times, and
achieves Un = 1.58, a value more characteristic of a large
Fortran-coded matrix multiply on the X-MP. No buffer fetches
occur in consecutive executions of the kernel. The inner loop of
MUL, has one pre-fetched vector read per inner loop execution.
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APPENDIX B

SIMULATOR VALIDATION

A. INTRODUCTION

The X-MP simulator was validated by comparison with a 16-bank
X-MP-2,

Our experience with a CRAY-1 simulator indicates that we can
expect to achieve a timing accuracy within 1% for typical kernels,
without bank conflicts. However, since the purpose of this report
is to study memory design pgrameter dependence on greatly-
extrapolated architectures in high-conflict situations,
credibility required closer validation.

In particular , it was felt necessary to validate conflicting

memory reference timing more precisely. Consequently, three types

of validations were made:
(1) Clock-level accuracy was tested for short runs of high-
conflict memory reads and writes.
(2) Statistical validation was made for long runs of very-
high-conflict reads and writes.
(3) Overall instruction timing accuracy was checked with a

low=-conflict linear algebra code.

B. CLOCK-LEVEL VALIDATION

1. Effect of priority switch on validation.

The X-MP-2 and X-MP-4 establish priority for simultaneous
bank conflicts between p processors with a rotating priority queue
that changes state every four clocks. This results in potentially

4p different timings for each multiprocessor run, corresponding to
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4p initial states of the queue. The relation of the queue state
to the real time clock is fixed at hardware startup, but may
change as a result of shutdown; the state of the switch cannot be
directly monitored.

When clock-level accuracy was to be tested, each code
executed m(4p) times, where m 2> 4 to insure reproducabiity. Each
of the m runs was started at the same queue state, determined by
masking the real time clock in a loop before the code was entered;
the loop was exited only when a desired mask was obtained, and
the loop length was chosen to advance the mask one clock upon each
loop execution. The next m runs of the code were made by

advancing the desired mask.

2. Clock-level validation of read/write tests.

Two codes consisting of vector reads and writes with random
bank starting address, random stride (< 64), and random vector
length (< 64) were synchronized at the clock level and left to run
for several hundred clocks (until a buffer fetch occurred) on an
X-MP-2, Termination times were recorded for each of the eight
initial states; in this period of time, approximately 2000 bank
conflicts and 300 section conflicts were recorded. Simulated
and actual run times matched precisely for all cases, after a
phase adjustment associated with the hardware indetermancy of the

priority queue relative to the real time clock.
3. Statistical validation of read/write tests.

In this test, processor #1 (P1) issued a series of 64-length,

unit-stride vector reads against a background of random reads and
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writes (see above) in a second processor (P2). The time of
the read-path reservation in Pl was recorded, and the mean and
standard deviation of this time determined. This data was
collected for up to 64000 reads in P1 on the hardware to determine
the dependence of the statistical results on the number of
trials.

Without bank conflicts, this reservation time is 69 clocks.
The high-conflict nature of the code in P2 is evidenced by a 107-
clock mean delay (55% overhead) for both hardware and simulated
timings. This validates the long-term read/write simulator

performance for even high-conflict cases.

4. Overall instruction timing validation.
A low-conflict CAL LU uniprocessor factorization referenced
in [1] [2) was compared with simulated performance, A .27% error

in simulated performance occurred with bank conflicts.
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